INDIAN STATISTICAL INSTITUTE Semestral Exam Introduction to Representation Theory 2018-2019

Total marks: 100 Time: 3 hours

You may assume G to be a finite group and all representations of G to be over \mathbb{C} .

1. Give justifications for the following statements.

(a) If χ is the character of an irreducible representation of S_n not equivalent to the sign representation, then $\sum_{\sigma \in S_n} sgn(\sigma)\chi(\sigma) = 0$.

(b) Let χ be an irreducible character of G. Then for every element g in Z(G), the center of G, we have $\chi(g) = \zeta \chi(1)$, where ζ is a root of unity.

(c) All characters of the symmetric group S_n are real.

(d) Order of a group G is odd if and only if G does not have any non-trivial real irreducible characters. (5×4)

- 2. (a) Define *algebraic integers*.
 - (b) Let $\phi: G \longrightarrow GL_d(\mathbb{C})$ be an irreducible representation.

(i) Let $g \in G$ and let h be the size of the conjugacy class of g. Then show that $h\chi_{\phi}(g)/d$ is an algebraic integer.

- (ii) Show that d divides o(G). (4+10+6)
- 3. (a) Let σ : G → S_X be a group action. Show that dim CX^G, the fixed subspace of the action of G on CX, is the number of orbits of G on X.
 (b) Write down the character table of S₄, with proper justification. (10+10)
- 4. (a) Let G be a group and H a subgroup of G. Let $\phi : H \longrightarrow GL_d(\mathbb{C})$ be a representation of H. Define the induced representation $Ind_H^G \phi$ of G.

(b) Let G be the dihedral group $D_{2n} = \{r^m, sr^m | 0 \le m \le n-1\}$. Let $H = \langle r \rangle \subset G$. For $0 \le k \le n-1$, let $\chi_k : H \longrightarrow \mathbb{C}^*$ be the representation given by $\chi_k(r^m) = e^{2\pi i k m/n}$. Determine $Ind_H^G \chi_k$. (8+12)

5. Compute the character table of S_5 . (20)